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Abstract

Three-dimensional analysis is performed for a transversely isotropic solid containing a half plane crack subjected to
point shear forces varying with time as a Heaviside function on the crack faces at a finite distance from the crack edge.
The solution of this problem is treated as the superposition of two sub-problems. One considers the transient waves in
an elastic half space due to the point shear loading on the surface, while the other concerns the half space with its
surface subjected to such distributed shear forces that the tangential surface displacements ahead of the crack edge
induced by sub-problem 1 can be canceled out. A half space subjected to a distributed dislocation on the surface is
constructed as the fundamental problem, which is solved by the use of integral transforms, the Wiener—Hopf technique
and the Cagniard-de Hoop method. Exact expressions are derived for the modes II and III stress intensity factors as
functions of time and position along the crack edge. Some features of the solutions are discussed through numerical
results.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

With the wide usage of macroscopically anisotropic construction materials such as geomaterials, crys-
tals, and fiber-reinforced composites, great interest has been shown in the dynamic crack problems of
anisotropic elasticity recently. For examples, Ohyoshi (1973) and Zhang and Gross (1993) considered
the SH scattering of a finite crack in a transversely isotropic medium, while Dhawan (1982a,b) analyzed the
interaction of a crack with incident P and SV waves. Lobanov and Novichkov (1981) investigated the
diffraction of SH waves by an oblique crack in an orthotropic half plane. Norris and Achenbach (1984)
studied the diffraction of P and SV waves by a semi-infinite crack in an infinite transversely isotropic
material. Studies for a periodic array of cracks in transversely isotropic solids have been presented by
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Zhang (1992) for incident SH waves, and by Mandal and Ghosh (1994) for incident P waves. Transient
stress intensity factors due to impact loading have been given by Kassir and Bandyopadhyay (1983) and
Ang (1987) for an in-plane crack in an infinite orthotropic or transversely isotropic solid, by Shindo et al.
(1986, 1992) for a crack in an orthotropic strip, by Ang (1988) for an in-plane crack in a transversely
isotropic layered solid, and by Kuo (1984a,b) for an interface crack between orthotropic and fully aniso-
tropic half planes. Rubio-Gonzalez and Mason (2000) derived an exact solution of dynamic stress intensity
factors at the tip of a uniformly loaded semi-infinite crack in an orthotropic material.

Most of research works discuss two-dimensional crack problems in the literature. But perhaps, because
of mathematical complexity, three-dimensional crack problems of an anisotropic medium under dynamic
loading have not yet received much attention. Among the limited studies, Tsai (1982, 1988) calculated the
dynamic stress intensity factors of a penny-shaped crack in transversely isotropic material due to time-
harmonic elastic waves, while Kundu and Bostrom (1991, 1992) computed both the scattered far-field and
COD of the crack. Lin and Keer (1989) performed the three-dimensional analysis of cracks in a layered
transversely isotropic media. Mattsson et al. (1997) investigated the 3D ultrasonic crack detection in an-
isotropic materials. In their recent works, Zhao (2001) and Zhao and Xie (1999, 2000) obtained exact
solutions of mode I problems for a half plane crack in a transversely isotropic material due to both impact
loads and moving loads.

Presently, three-dimensional analysis is performed for a transversely isotropic solid containing a half
plane crack, with the crack faces subjected to point shear forces varying with time as a Heaviside function
at a finite distance / from the crack edge. The similar problem, but for the static case, was solved by
Kachanov and Karapetian (1997) with potential theory. Nevertheless, when dynamic loading is present, the
governing equations become hyperbolic ones, and the potential theory no longer applies. In this case,
Laplace transforms in conjunction with the Wiener—Hopf technique prove to be powerful tools in obtaining
analytic solutions. However, due to the existence of a characteristic length / in the loading function, an
inconvenient exponential term (having unbounded behavior at infinity) appears when Laplace transforms
are applied, which implies that the solutions of the Wiener—Hopf equation or equations are polynomials of
infinite-degree. Clearly, one cannot dispose so many physical conditions to determine the unknown coeffi-
cients of such polynomials, and therefore the direct use of the Wiener—Hopf technique is inhibited. For
this reason, this problem has long been considered as one that could not be solved (Freund, 1990). In his
previous work (Zhao, 2001), the author proposed a methodology for dealing with the difficult, and then a
scalar Wiener—Hopf problem was solved. As a continuation of the work, a vector Wiener—Hopf problem,
generated from the coupling of modes I and III due to the action of shear loading, is now considered. The
solution is treated as the superposition of two sub-problems. One considers the transient waves in an elastic
half space generated by a point shear load varying with time as a Heaviside function on the surface, while
the other concerns the half space with its surface subjected to such distributed shear forces that the tan-
gential surface displacements ahead of the crack edge induced by sub-problem 1 can be canceled out. A half
space subjected to a distributed dislocation on the surface is constructed as the fundamental problem to
solve sub-problem 2. Obviously, the fundamental problem does not have a characteristic length in the
loading function, and can be solved by the use of integral transforms, the Wiener—Hopf technique and the
Cagniard-de Hoop method. Exact expressions are derived for the modes IT and 111 stress intensity factors as
functions of time and position along the crack edge. Some features of the solutions are discussed through
numerical results.

2. Basic formulas

As shown in Fig. 1, the configuration considered is a transversely isotropic solid containing a half-plane
crack. Suppose that the solid is initially stress free and at rest. A right-handed rectangular coordinate
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Fig. 1. A half plane crack subjected to a pair of point shear forces perpendicular to the crack edge.

system is introduced such that the y-axis coincides with the crack edge, and the half-plane crack occupies
the area z = 0 and x < 0. It is also assumed that the symmetric axis of the transversely isotropic material is
parallel to z-axis. At time # = 0 an opposed pair of point shear loads suddenly begin to act on the crack
faces at a point of a finite distance / from the crack edge, resulting in a three-dimensional stress wave field in
the solid.

Let u,(x,y,z,t), u,(x,y,z,t) and u.(x,y,z,t) denote the relevant displacement components in x, y and z
directions respectively, then the stresses in the solid can be expressed by the relations

6 ou Ou,
T = €13~ +Czay+03a (la)
6 Ou Guz
Oy = a JrCla—;JF 3 o (lb)
_ Ouy + %_'_ Ou (10)
0, =C3 ax Cc3 6)/ Cq 62 )
Ou. Ou,
0}2—05[ay+a—;], (1d)
Ou, Ou,
Oy = Cs { 5 2 }, (le)
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1 Ou, Ou
O'Xy_z(cl—6‘2)|:ay+a—xy:| (1f)
where ¢; (k = 1-5) are material constants.
Equations of motion for the problem are
Gijj = Pi; (i=2x,,2), (2)

where p is the material density.
For a transversely isotropic material it is convenient to introduce scalar potentials ¢(x,y,z,t), ¥(x,y,z,¢)
and 0(x,y,z,1), so the displacement components can be represented as (Buchwald, 1961)

9¢ o
e = o T oy’ (3a)
_ % oy
00
= 3
u: = (3c)
Substitution of the above equations into Egs. (1) and (2) gives after some manipulation
Py Py
2
a4V lp"‘rds@:?, (4a)
%0 %0
2 2
a3V ¢+615V 9+02@:W7 (4b)
2 620 62
a1V2¢+a5—¢+ a3 =~ ge (4c)

0z? o2 o’
where V? = +§y
as = cs/p.

Using symmetry with respect to the plane z =0, we only consider the region z > 0. The boundary
conditions for z = 0 are written as

5, and the five constants a; =c¢/p, a» =c4/p, a3 = (¢cs+¢3)/p, as = (c1 —c2)/2p,

0.(x,3,0,1) =0, (5a)
0 (x,9,0,8) = —Fo(x + 1)0(y)H(t) + o (x,»,1), (5b)
0103,0,1) = 506,31, 1), (50
ue(x,,0,0) = u, (x,,1), (5d)
uy(x,,0,1) = u, (x, y,1), (5e)

where —oo < x, y < 400, F is the intensity of loads, H(-) is the Heaviside function and J(-) is the Dirac
delta function. The functions o7 (x,y,?) and o (x,y,) represent the unknown components of stresses
0x:(x,,0,t) and 0,.(x,»,0,¢) in the region of x > 0, respectively; while o7 (x,y,#) = 0 and o;(x,y, t) = 0 for
x < 0. The functions u(x,y,t) and u; (x,y,t) represent the unknown components of displacements
u,(x,,0,) and u,(x,,0,7) for x <0, respectively; while u; (x,y,7) =0 and u (x,y,¢) = 0 in the region of
x = 0.
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The initial conditions are expressed in terms of the potentials as

(]5()6,)/,2, 0) = lp(xay727 0) = H(X,y,Z, O) = 07 (6)
aqs('x’y? Z’ O) _ alp(x’y’ Z’ 0) _ ag(x7y’z7 0) —
ot N ot - ot =0 )

From the boundary conditions described in (5), we can see that the above formulated problem is in fact the
case of a half space with its surface subjected to a point shear load varying with time as a Heaviside function
in the half region of x < 0, while the tangential surface displacements being zero in the region of x > 0.
Therefore, the solution of the problem can be treated as the superposition of two sub-problems. Sub-
problem 1 considers a half space under the action of a point shear load on the surface, while sub-problem 2
concerns the half space subjected to shear forces o7 (x,y,t) and o (x,y,?) so that the tangential surface
displacements induced by sub-problem 1 can be canceled out for x > 0.
The boundary conditions of sub-problem 1 can be written as

0.1(x,9,0,¢) =0, (8a)
0t (6,3,0,1) = —F3(x + () H 1), (5b)
0,1 (x,»,0,¢) =0. (8¢)

The solution procedures for this sub-problem are based on the use of Laplace transform over time and
Hankel transforms, and the main steps are shown in the Appendix. The detailed calculation may be found
in the work of Zhao (1999). If the Laplace transform of any function, say ¢(x,y,z, 1), is denoted by a
superposed hat, that is

bz = [ " bz e dr 9)

the tangential surface displacements will take the following forms:

_ _ Fpy [ [g(v) — f(v) OKo(pasvr)
uxl(xayvovs) - % /l |: p%SZUZ Ox2

— g(v)Ko(pasvr) |do, (10)

A Fpy [ g(v) — f(v) OKo(pasvr)
tyy (x,,0,5) = 2p A pysiv? 0x0y dv,

(11)

where s is the transform parameter, Ky(pasrv) is the modified Bessel function of the second kind and

r=/(x+1)7+2, (12)
0 v < pi/pa
g(@:{_% N (13)
Vaaas (v2—as /as)?
p=a', p=a', pi=a;". (14)

In addition, when p; /p, < v < 1,

v010s
B , 15
) (1= 202)" + asP? + a0 + (40 + asP)* (2 = ) (1 - 0?) -
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When v > 1,
£ OV | (23)
v) = ,
(1 —202)° 4 asPv? + a2Q — (40* + asP)\/1? — as/a;Vv? — 1
4 _
0; = a(a) — as) Bs + B4 (24)
aiprlarar — (a3 — as) \/vz—a5/a1 VR -1
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The boundary conditions of sub-problem 2 can be written as

6222(x7ya0ﬂt) = 07 (27&)
szz(x7y707t) = O-;(xv.% t)v (27b)
0}72(x7y707t) = 0;()(?,)/, t)v (270)
ux2(x y70 t) - Ll (X Y, ) l(x7ya t)7 (27d)

I/lyz(x »,0, t) = u (x hg ) vl(xvyvt)v (276)
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where
ulf (x,3,8) =t (x,9,0,6)H(x), (28a)
yy (%, 9, 8) = uyi (x, 9,0, )H (x). (28b)

Our task is to determine the functions a7 (x,y,1), o1 (x,», ), u(x,»,) and u}, (x,, 1), which are presented in
the next two sections.

3. Required fundamental solution
As the first step of solving sub-problem 2, a fundamental problem is constructed. The problem can be

viewed as a half-space problem with the material occupying the region z > 0, and subjected to mixed
boundary conditions on z = 0. In the Laplace transform domain, the boundary conditions are expressed as

/G\ZZ()Q)/, O,S) =0, (293.)

G.(x,3,0,5) = 3. (x,,9), (29b)

G,.(x,,0,5) =G, (x,,9), (29¢)
v . v) — f(v) *Ko(pasvr

W 0.9) =, () — | EOZLD TR )16 ) | (o), (294)

D38%v Ox
_r s g(v) = f(v) @Ko(pasvr)
U, (x,,0,8) =u, (x,y,5) P axdy H(x). (29¢)

The solution procedures are based on the use of transform methods and the Wiener—Hopf technique.
Initially, a one-sided Laplace transform over time is applied to the partial differential Eqgs. (4), taking into
account initial conditions (7). Thereafter, a two-sided Laplace transform is introduced over the y coordi-
nate. The complex transform parameter is s, and the transformed function is denoted with a bar, for
example,

Fx&iz,s) = / T e y.zs)e dy, (30)

Finally, a two-sided Laplace transform is used to suppress the dependence on x. The complex transform
parameter is s, and the transformed function is denoted as

+00
# ez = [ bnizsemds (1)
The partial differential equations (4) are reduced to
i d2 *
—ass I3y + as dzlé =0, (32a)
200 | 22\ gk 2 2% d’o
as~ (" + &) " —ass" 10" + ax—— =0, (32b)

dz2
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d2 * d20*
—a\s* 19" + as dj) +a3—— FE =0, (32¢)
where
w(n &) =@ —-n-&)", (33)
w(n,&) = (= = &), (34)
(&) = (3 =’ = &) (35)
The bounded solutions to Egs. (32a)—(32c) as z — oo may be written in the form
¢ = Ade M 4 Be ™, (36a)
2 —ash; 2—asi;
6* _ ar iy - lA —sAz 4 a1l 2a5 2B67$A227 (36b)
a3}v] 613/12
Y= Ce™, (36¢)
where A, B, C are arbitrary functions of ¢ and 5, and
2
L+ &) +a> + as Lp> 4 &) 4 ay + as a
= + 4 h 0 37
A2 2aras 2tras Mk, (37)

. a.
= \F“ (38)

The complex # plane is cut along \/p? — & < [Re(y)| < co, Im(y) = 0 so that Re(y;) > 0 in the entire cut ;
plane for each value of #, and likewise for Re(u,, i3, 41, 42) = 0.
Making use of the known integral (Freund, 1990)

| Katpssroyexploser)ay = = explsta-+ 1] (39)

where

A= A& = /P - &, (40)

and substituting the transformed stresses and displacements into the boundary conditions (29), we have

a3(a3 — as) (" + &) + ax(arpuy — asiy)|A + [as(as — as)(f* + &) + ax(arp; — asi3)|B =0, (41a)
2 a —ashy | ar; — as’ ; +

—pstas| (LB ) Vpa o+ (BB L VB esC| = 3T, (41b)
as/ as/y
2 _ 22 2 /’12

—pszasK‘““l—wa 11)5A+ (M+A2> 53—n13c] =37, (41c)
asAy asiy

1
snd +snB + séC = U, +——UY, (41d)

n+ 4
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A+ sEB—syC = U~ +——U"
s€d+sEB—snC=U, + Pkt

where

+00
Il= S/ / G,. (x,y,5) exp[—s(&y + nx)]dydx,

b
+

+00

= s/ / Ayz x,,5) exp[—s(&y + nx)] dydx,
+00

U =s / / i, (x,y,s) exp|—s(&y + nx)] dydx,

+00
v =5 [ / 7. (x, ) expl—s(& + )] dydx,

2 = OSSN exp ) + Fato)expl-1),
Uy = W exp(—slA).

If 4, B, C are eliminated from the above equations, we will obtain

1
~pasD(n, £)C(n, &) (U ; mw) _C(n, o,
where
U = v U= U Tt = 2o
\y ) \g ) S \Z )
_|n ¢
D( f) |:\/m R((ﬂ,i)) 0 :|
= axas  Jo(1,¢
e 0 ol
{lt0 0 ~ vl + &) + s+
R(n, &) =

Vaiaz (2 + 12)

185

(41e)

(52)

Eq. (48) is a matrix Wiener—-Hopf problem. In order to determine the unknown functions £ and U™ with
the Wiener—Hopf technique, we must represent any mixed function in (51) as the product of two sectionally

analytic functions. To this end, we introduce a new function by defining

R(n, &)

S(”I,f):m,

(53)
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where ¢ = ¢!, ¢, is the Rayleigh wave speed of the transversely isotropic material and

i (2a2a5)1/2 ajay — (a3 — a5)2 (54)

T 12 2"
i [— (I? — 4a1a,a2)'"* — L] + [(L2 — dayara?)'? — L]

Following the work of Zhao (2001), The function S(n, £) can be decomposed into

S(n,&) =8+ (n,)S-(n, &), (55)
where
L 1A +/(9)]leds
S ) = - ) 56
L(1.9) exp{ ./ \/czéz(\/szfzin)} (56)
42 4 PR I
A= | é-) ;zl;zujagugpll’ o7
. _ ﬁs\/gz_P%—ﬁﬁ\/P%_gzl
Q) =1tg! , 58
A=t lﬁs\/P%_€2+ﬁ6\/C2_P% %)
[ L +ar+a 2 a 7' L +a,+a .
| (At etas\ e s s o L +ay+as
Bs = { _( Dards ) +a2 (c Pl)(Pz c )— + Dayas } ) (59)
_ } 12
B L2 +ay+as\° a 2 o2 o 2 L* +ay + as
ﬁG{_<TZGS> +a—2(C —Pl)(Pz—v)_ T e [ (60)

The functions S, (17, ¢) and S_(n, &) are analytic and nonzero in the half planes Re(y) > —1/p} — & and

Re(n) < y/p} — &, respectively.
We also have
1/2

TURIES (\/zﬁJrn)m- (\/pﬁ—o (61)

and
1/2 1/2

5(1,6) = <a4/a5>“4(m —& "> - <a4/as>”4( = ") | (62)
Then the matrix D(#, ¢) can be factored as

D(n, &) =D (n,&)D_(n, ), (63)
where

(km) V2 (\f@—24n)s.(n0) 0
asras — 1/2
z—g'i;
D.(n,¢&) = (ViA=e) s (64)

: DR
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Eq. (48) becomes

_ a _
~pasD_(1 E)C(. U™ ~ L D_(1.9)CO, U’ = D (1.E)Cl. OE” (65)
The only singularity in (65) is a simple pole at = —A. This singularity can be removed by requiring the

residue to be zero, so we obtain

- pas 0
—pa5D, ('17 é)c(’/la i)U - n + P [D, ('/Iv é) - D+(iv é)}c(nv é)U

_n-! z + pas A 0

The right-hand side of the above equation is analytic for Re(iy) > —/p? — &, and the left-hand side is
analytic for Re(n) < \/p? — &*. Consequently, by analytic continuation, the two sides represent a single
entire function vector E(n, £,5). At the same time, each component of E(y, &, s) is a constant as 1 — +00
and has the order of |17|1/2 as n — —oo. From the extended Liouville theorem, we have E(n, &,s) = A, and A
is a vector which is independent on the variable #. Thus,

1
n+ A

+ pas
o+ &

C(’% f)D+ (1/]7 6) |:A - D+ (;“7 i)C(na é)UO:| ) (67)

(D (1, e:){A oo - oco. «:)UO}, (68)

__ - _
o+ & "+ 4

where the vector A remains to be determined. Let A = (4, 4,)" and

—¢ Im(&) >0,
o ¢ (€) (69)
¢ Im(9) <0,
then it is seen from (67) and (68) that £* has a simple pole at n = iw in Re(n7) > —/p? — &, and U hasa
simple pole at # = —iw in Re(y) < \/p} — &*. These two poles must be removed because £+ and U™ are
analytic in the half planes Re(n) > —\/pf — & and Re() < 4/ P - &, respectively. Therefore,
. . 1 PP o| _
C(iow, &)D, (1w, &) [A e iwDJr()», & C(iw, &)U ] =0, (70)
Clion D (o O A+ 52 ID-(— 0.8 = DR ICC - 0, U} 0. (1)

From the above equations and the observation that C(, ¢) has rank 1 at n = +iw, we have

A, = iw D2 D] D2 D1 D2 Dl UO é D2 Dl D2
T DD |itiw\E E ) i—iw\E E )| " Di+D}|i+iw\E E
D, D, D 0
-2 _ = 2
+i—10)(E2 El):|Uy, (7)
é D] D] D2 Dz D2 Dl 0 10 D] Dl D2
A2 = 2 2 Py . I — + . I (]x - 2 2 Py . I —
Di+D; | A+io \ E, E A—iw \ E, E; Di+D; | i+iw \ E;, E

D, D, D 0
i—l(l)(Ez El ):|Uy, (73)




188 X. Zhao | International Journal of Solids and Structures 41 (2004) 177-197

where

1/2
[2  £2 :
( axdas >1/2 ( " 5"'1(1))
D, = i

Vaia (\/c2 —g’z+iw)S+(iw, 5)’

as\ 1
D= (%) 7 (79)

4

<\/P§—éz+iw>
12
[ w2,
E < axas >1/2 ( nos +A)
=
k

Vaia (\/c2—52+).>S+(/"L, &)

ds 1/4 1
B, = <a_4> 2 (77)
(\/pﬁ -& +;L>

Once Xt and U™ have been determined, the functions 4, B and C can be solved from Egs. (41). By sub-
stituting (36) into Egs. (3) and (1) respectively, the displacements and stresses for the fundamental problem
are then derived. From Egs. (10), (11), (27) and (29), we see that the solution of sub-problem 2 can be
obtained by a direct integration of the fundamental solution.

4. The stress intensity factor histories

In the field of dynamic fracture mechanics, the interest will be the determination of dynamic stress in-
tensity factors. The stress intensity factors for the fundamental problem in the Laplace transform domain
can be expressed as

Ki(&5) = lim[(2m) a1 (x, &, 5)), (78)
Kin(&.s) = lim [(2m0)' 760" (x,&,5)]. (79)

From the Abel theorem concerning asymptotic properties of transforms (Freund, 1990) and by virtue of
Egs. (42) and (43), we get

KhEs) | o )
KL (E,5) = Him [<2s17> Ty, ¢5) s ] o

Substitution of (67) into the above equation yields

2 1/2
KEEs) =25 ( kv “1“2> \/%Gl(i, ,v) exp(—si2), (81)

V2 ards
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14
Kiu(eo) =55 (2) 25 exp( i), (82)
where
Gi(¢ 0,0) = g1(& 0, 0)f (v) + &2(&; ,v)8(v), (83)
GZ(éa G),U) = g3(éa w, U)f(l)) +g4(€,(/07 U)g(l)), (84)
1 io(D? — D3)
gl(f,wav)——E—lpﬂLw]a (85)
- iCUUZ Dz D1 Dz D1 D2 D1 02 .
g(& m,v) = _a5/1(D% +D2) [i—kiw <E_2E—1) T io (E_QE—I):| *m—gl(éyﬂ%v)’ (86)
2¢D1 D,
©l& o) = F o) &7
- 1)26 D1 D1 D2 D2 D2 D1
gu(C 0 0) = = b [A—Hw (E_z _E_1> T e (E_2 _E_l)} &6 o). (88)
The inverse two-sided Laplace transform of (81) is
~F npat [ k/aia ““m
Rl =725 (R ) s | o) - ol (59)

where y > 0 is assumed for the time being and o, is any real number between —p,v and p,v. The inverse
transform is carried out here through use of the Cagniard-de Hoop technique. The Cagniard contours are
introduced by setting /4(&) — &y = t, which can be solved for ¢ to yield

vt il

VAR £ - pv0?+ ). (90)

In the & plane, (90) describes a hyperbola that is denoted as I'y. When ¢ = t, = p,v/)? + 2, the imaginary
part of &, vanishes and the vertex of the hyperbola I'; is defined by

pvy
0 \/}m ( )
The I', and I'_, together with the inversion path of ¢ and two arcs of indefinitely large radius, form a closed
contour as shown in Fig. 2. Now, we shift the £ integration to the contour. When |&;| < py, it is found that
the integrand in (89) is analytic inside and on this contour. Choose the appropriate branch of A(&) such that
A(0) = pyv. Then, according to Cauchy’s integral theorem and Jordan’s lemma, we obtain

ii:—

~F p7ra5 ky/aia> 2 s o 0,
Knrs) =2 ( ) \/;-nlm e e v (92)
From the convolution theorem for Laplace transform, we have
2,0(12 k aap 65 dr
K :\/5 / Im|G = 93
) = 225 (B ) & [mlo. 0] 93)

where the variable ¢ in ¢, should be replaced by z.
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Fig. 2. The integration contour.

When |&)| > p;, an additional integration path from —p; to —|&,|, which embraces the branch cut of
G (¢, w,v), must be considered. Eq. (89) becomes

B (,s) = 275 (k\/m) \/E %<Im/mGl(6+,—@w)exp(—“)‘%d’

v? aras f0

ol
St [ G~ &G exp { sl + 0T} ). (04)
P
Let [A(&)) + &y = 1, then we have #y <1 <t, Where ty = p1y + [\/p3v? — p7. &, is solved to be

VT
e s N 09

The stress intensity factor in the time domain can be obtained as follows

2pal [k 2 ’
ko) =252 (R2) S [l -S| E

w02 aras Vi—1
fo 0 d
_/rH Im|:Gl( ¢, &, ) 61] \/tz—r} (96)

Combining (93) with (96), the dynamic stress intensity factor for the fundamental problem may be
expressed in the form

kit =28 (SEE) T2 Mimfaige., ¢ ﬂ\/d"'—
- [ mloea S| o (w-2TEE) | ©7)
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In a similar way, we have

2 2 1/4 0 t d N d
Kﬂl(yvt):\/;% (Z_i) a{/l Il’n|:G2(£+7 6+7 ) é :|\/l‘z—’l7

o 01 dr 2] *2) }
L] Im |:G2( fhéla ) ot :| mH<Uy P Y + [ (98)
With the fundamental solution and the solution of sub-problem 1 at hand, it is now possible to construct
the stress intensity factor histories for the case of point shear loading varying with time as a Heaviside
function on the crack faces at x = —/, y =z = 0. As described in the second section, this solution can be
treated as the superposition of sub-problems 1 and 2. Obviously, the shear stresses of sub-problem 1 are not
singular at x = 0, z = 0. Therefore, the stress intensity factors are determined by sub-problem 2 only. From
Egs. (10), (11), (27) and (29), it is found that the stress intensity factors are given by

F o0
Ku(y,1) = 22 / K)o, Ku(y, 1) = 22 / KL (1) do. (99)
p/p2 n P1/m

Substituting (97) and (98) into the above equations and taking into account that ¢y <#) <t¢, we finally
obtain

as ayas 12 o o
Ku(y,1) = \sz (kx/ ) %[/ %Kl(y,t,v)f(u)dv—l—/ %Kz(y,t,v)g(v)dv], (100)

) W/p2 U ps/p U
\/EFa5(a4a5)l/2 0 ‘o to 1
Ky.) =G S [ kst [ SR g dol, (101)
/2 Ot | Jpyjpm U os/m U
where
! o0& dr
Kj(y7[av):/ Im|:gj(é+a f-%—v ) +:| ! p
) -

- [mlacean S| En (- 2VTEE) G=14) (102)

t—7
. t
P y2+12'

Though Egs. (100) and (101) are derived with the limitation y > 0, they can be easily extended to the full
range —oo < y < oo by analytic continuation.

vo (103)

5. Case of loading parallel to the crack edge

When the point shear forces varying with time as a Heaviside function are applied in a direction parallel
to the crack edge (Fig. 3), it is found that the stress intensity factors take the same forms as Egs. (100) and
(101). However, the functions g;(&, w,v)(j = 1-4) should be replaced by

: D2_D2
B0 =g |1+ | (104)

w00 = -t R (B2 B (B O o (105)

CEA(D% + D%) ) —+ 1w E2 E] A — 1w E2 E]
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Fig. 3. A half plane crack subjected to a pair of point shear forces parallel to the crack edge.

B 28D, D,
JE\(D}+ D3)’

iov? D, D, D, D, D, D v?
= (= —-=) - (== ) - —— = L, v). 107
gu(C 0 0) = o oy [i Fiw <E2 E ) i—io (Ez E )} g, S (107)

(& o,v) = (106)

6. Numerical results and discussions

We now discuss the properties of the dynamic stress intensity factor histories represented by (100) and
(101). It is observed that the first term in (100) and (101) reflects the influence of the dilatational wave, shear
waves and the Rayleigh wave. The function f(v) has a simple pole at ¢/p,, and an immediate inference is
that when the Rayleigh wave arrives, the stress intensity factors will become singular at this instant. The
second term in (100) and (101) is induced by shear waves alone. It is also seen that K;(y, ¢, v) consists of two
terms. One is induced by the incident waves, and the other is due to the incident secondary waves produced
by the first waves interacting with crack edge. That is to say, at a point on the crack edge, we may observe
the arrivals of two kinds of waves. One kind of the waves are generated by the impact point shear loading
and propagate directly towards the observing point. The other kind of the waves are also due to the impact
point loading, but firstly arrive at the crack tip, and then propagate along the crack edge towards the
observing point. This phenomenon is quite different from the two-dimensional case as discussed by Freund
(1990).
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To make the physical meaning much clear, a numerical calculation of (100) and (101) is carried out for
Poisson’s material that is isotropic, and for Beryl that is transversely isotropic.

Poisson’s material: a; = a, = 3as, a3 = 2as, as = as, c = 1.088/,/as.

Beryl: a; = 4.12484as, a, = 3.61802as, a3 = 2.01199as, ay = 1.17363as, ¢ = 1.04645//as.

Results for y = [ are shown in Figs. 4 and 5, with the solid line for Poisson’s material and the dashed line
for Beryl. In the figures, T = vops/p1, SIF 2 = Ky (v, 1)(nl)** /(V2F), SIF 3 = Ky (v, 1)(nl)** /(V2F).

It is shown in Figs. 4 and 5 that before the arrival of the dilatational wave, the medium is completely at
rest and the stress intensity factors are zero. At the instant when the dilatational wave arrives, a jump takes
place, and then the stress intensity factors decrease with time. Upon the arrival of the first shear wave, a
discontinuity happens. When the Rayleigh wave arrives at t = (1> + yz)l/ :. ¢!, the stress intensity factors
are of the singularity (v —¢/p,)”" at this instant. Thereafter, the transient stress intensity factors decay
gradually towards their equilibrium stress intensity factors that were obtained by Kachanov and Kara-
petian (1997).

This completes the analysis of a half plane crack in a transversely isotropic solid under the action of a
pair of point shear loads varying with time as a Heaviside function on the crack faces at a finite distance /

3 H
|
2 )
:\;
1 N \

[9V]

& \\'-
0 .
_1 1

1
_2 L
0 1 2 3 4 5 6

Fig. 4. The dynamic stress intensity factor history Ky (y, ).
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Fig. 5. The dynamic stress intensity factor history Ky (y,?).
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away from the crack edge. Exact expressions are derived for the modes II and 111 stress intensity factors as
functions of time and position along the crack edge.
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Appendix A

The dynamic response of an elastic half-space to tangential surface loading.
Consider the case that a concentrated force parallel to x-axis is applied at the origin and varies with time
as a Heaviside function. In the cylindrical co-ordinate system, the boundary conditions can be described as

0.1(r,0,1) =0, (Al.1)

0-1(r,0,¢) = —Fo(r)H(t) cos ¢, (A1.2)

0yp:1(r,0,1) = Fo(r)H(¢) sin ¢. (Al1.3)
For this case, the solution will take the following forms

u(r,@,z,t) = u,(r,z,t) cos @, (A2.1)

up (7, @,2,1) = —u,(r,z,t) sin @, (A2.2)

un(r, @,z,t) = u.(r,z,t) cos ¢. (A2.3)

Further, the functions u,(r,z,t), u,(r,z,t) and wu.(r,z t) can be expressed with scalar potentials ¢(r,z, ),
W(r,z,t) and 0(r,z,¢) as

u,(r,z,t) :W—f—%d/(nzﬂ), (A3.1)

uy(r,z,t) = ;aﬁ(hzy 1) + W (A3.2)

u,(r,z,t) :w. (A3.3)
Equations of motion become

W(SEI 1) T s

al(zzT(f—&-;aa—(f—:—zd)) +a5%27(f+a3g:ag—t?. (A4.3)

In addition, the initial conditions of zero must be satisfied.
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With the help of Laplace transform over time and Hankel transforms, the bounded solutions of Egs.
(A4.1)-(A4.3), can be obtained:

$(r,z,5) = / (1675 + Bie )8 (rE) d¢, (A5.1)
0
—~ 00 _ 21 _ 2)2
Q(F,Z,S) :/ (alé +s ) ass /“4A 73442 (alé +s ) ass SB —sis5z f-]l(ré)dé7 (A52)
0 a3s2) agsZAS
birzs) = [ Cie e re) dc (AS3)
0
where 4;, B; and C) are arbitrary functions of ¢ and s, and
1
= s (as& + %), (A.6)
/4 and Zs are the positive roots of the following equation:
aass* it — sz[( — a3 + alaz)é + (a2 + as)s ] (alé 45 )(0152 +5%) =0. (A7)
From boundary conditions (A1.1)-(A1.3), 4;, B; and C; can be determined:
A, = Fé;u4i5 (0161252 =+ leSz) — a2a5szi§ — Ll3(613 — 615)62 (A8 1)
: 2npa55 (25 — ) (a1 & + 52)s* + s{[ar1as — (a3 — as)'|E + aps?}ouls '
i Fé)»4i5 (alazéz + azsz) — Clza5szii — a3(a3 — a5) (AS 2)
27tpa5é2()»5 —4) (alé2 +52)s2 + sX{[a1ar — (a3 — a5) ]5 + axs?}4ls ’ '
i - (A8.3)
2npass?Elg
Then, we have
0 T mm &) — rde + I ()
. (r,0,s) = 4np\/m / o(sr 5 (s7°é 4np\/m \/7 o(sr
+ (s de, (A9)
o & é +p2
i ,(r,0,5) = 4np i / Vo (sré) + Jo(sré)| dE
[Jo(sré) — Jh(sré)]dE, (A.10)

M

where

ey 2 ot = s = a1+ [E 4 ok Jaas( @ 44 Al
e Vaias (s + Js) ’ '
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22 _L52+az+a5j:\/[1452+az+as}

N =
78 2a»as

—EEE ). (A-12)

2a-as

Introducing the contour integration similar to the solution of Lamb’s problem for the isotropic material
(Eringen and Suhubi, 1975), we further have

F o[ VE=?
u,(r,0,s) :—2/ Im g LAY K (srv)dv
2n%p Jo Vasas\/p3; —vr JaiaR, (iv)

S /OOI LAUVP T o, (A.13)
21°p Jo Vasas\/p3 — 1)2 Vaia;R, (iv)
P . Vo
Uy(r,0,8) = —=—— / Im 0 LAY K> (srv)dv
27‘62/) 0 \/M’ /pg — 2 ,/alale(lv)

*© / )
- Fz / Im azv - Ko(srv) dv. (A.14)
27%p Jo \/asas\/p3 — 1;2 Vaia;R, (iv)

The surface displacements in x and y directions take the following forms:

Ug =u,(r,¢,0,5)cos @ —u,(r ¢,0,5s)sin @, (A.15)
Uy, =u.(r,e,0,s)sinQ+u,(r, ¢,0,s)cos¢. (A.16)
By using the relations
sin<p:X, cos<p:)£, (A.17)
r r
2x? 2 O*Ko(srv)
(7— 1>K2(SVU) :WT_KO(WU)’ (Alg)
Xy 1 @Ky(sr)
2 Ky (srv) = 7 oy (A.19)
we finally have
U = R /Oo Im v Cwuy/ps =0 | 1 OKo(srv) do
o 7T2p 0 \/m p% — 2 ./alale(iv) s2v? ox?
F e e]
— / Im K() Sl"l) (AZO)
P Jo Vasas/p3 —172
o ZL/OCIm ° _avvp =t L FK) (A21)
w2 fy Jaasn/p2 — v Vaia;R(iv) | s2v?  0xdy
Let
PO T v/ Al e e I (A.22)
VaiazR, (iv) Vasasy\/p; — v?

and change the integration variable v to p,v, we obtain Egs. (10) and (11).
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