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Abstract

Three-dimensional analysis is performed for a transversely isotropic solid containing a half plane crack subjected to

point shear forces varying with time as a Heaviside function on the crack faces at a finite distance from the crack edge.

The solution of this problem is treated as the superposition of two sub-problems. One considers the transient waves in

an elastic half space due to the point shear loading on the surface, while the other concerns the half space with its

surface subjected to such distributed shear forces that the tangential surface displacements ahead of the crack edge

induced by sub-problem 1 can be canceled out. A half space subjected to a distributed dislocation on the surface is

constructed as the fundamental problem, which is solved by the use of integral transforms, the Wiener–Hopf technique

and the Cagniard-de Hoop method. Exact expressions are derived for the modes II and III stress intensity factors as

functions of time and position along the crack edge. Some features of the solutions are discussed through numerical

results.
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1. Introduction

With the wide usage of macroscopically anisotropic construction materials such as geomaterials, crys-

tals, and fiber-reinforced composites, great interest has been shown in the dynamic crack problems of

anisotropic elasticity recently. For examples, Ohyoshi (1973) and Zhang and Gross (1993) considered

the SH scattering of a finite crack in a transversely isotropic medium, while Dhawan (1982a,b) analyzed the
interaction of a crack with incident P and SV waves. Lobanov and Novichkov (1981) investigated the

diffraction of SH waves by an oblique crack in an orthotropic half plane. Norris and Achenbach (1984)

studied the diffraction of P and SV waves by a semi-infinite crack in an infinite transversely isotropic

material. Studies for a periodic array of cracks in transversely isotropic solids have been presented by
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Zhang (1992) for incident SH waves, and by Mandal and Ghosh (1994) for incident P waves. Transient

stress intensity factors due to impact loading have been given by Kassir and Bandyopadhyay (1983) and

Ang (1987) for an in-plane crack in an infinite orthotropic or transversely isotropic solid, by Shindo et al.

(1986, 1992) for a crack in an orthotropic strip, by Ang (1988) for an in-plane crack in a transversely
isotropic layered solid, and by Kuo (1984a,b) for an interface crack between orthotropic and fully aniso-

tropic half planes. Rubio-Gonzalez and Mason (2000) derived an exact solution of dynamic stress intensity

factors at the tip of a uniformly loaded semi-infinite crack in an orthotropic material.

Most of research works discuss two-dimensional crack problems in the literature. But perhaps, because

of mathematical complexity, three-dimensional crack problems of an anisotropic medium under dynamic

loading have not yet received much attention. Among the limited studies, Tsai (1982, 1988) calculated the

dynamic stress intensity factors of a penny-shaped crack in transversely isotropic material due to time-

harmonic elastic waves, while Kundu and Bostrom (1991, 1992) computed both the scattered far-field and
COD of the crack. Lin and Keer (1989) performed the three-dimensional analysis of cracks in a layered

transversely isotropic media. Mattsson et al. (1997) investigated the 3D ultrasonic crack detection in an-

isotropic materials. In their recent works, Zhao (2001) and Zhao and Xie (1999, 2000) obtained exact

solutions of mode I problems for a half plane crack in a transversely isotropic material due to both impact

loads and moving loads.

Presently, three-dimensional analysis is performed for a transversely isotropic solid containing a half

plane crack, with the crack faces subjected to point shear forces varying with time as a Heaviside function

at a finite distance l from the crack edge. The similar problem, but for the static case, was solved by
Kachanov and Karapetian (1997) with potential theory. Nevertheless, when dynamic loading is present, the

governing equations become hyperbolic ones, and the potential theory no longer applies. In this case,

Laplace transforms in conjunction with the Wiener–Hopf technique prove to be powerful tools in obtaining

analytic solutions. However, due to the existence of a characteristic length l in the loading function, an

inconvenient exponential term (having unbounded behavior at infinity) appears when Laplace transforms

are applied, which implies that the solutions of the Wiener–Hopf equation or equations are polynomials of

infinite-degree. Clearly, one cannot dispose so many physical conditions to determine the unknown coeffi-

cients of such polynomials, and therefore the direct use of the Wiener–Hopf technique is inhibited. For
this reason, this problem has long been considered as one that could not be solved (Freund, 1990). In his

previous work (Zhao, 2001), the author proposed a methodology for dealing with the difficult, and then a

scalar Wiener–Hopf problem was solved. As a continuation of the work, a vector Wiener–Hopf problem,

generated from the coupling of modes II and III due to the action of shear loading, is now considered. The

solution is treated as the superposition of two sub-problems. One considers the transient waves in an elastic

half space generated by a point shear load varying with time as a Heaviside function on the surface, while

the other concerns the half space with its surface subjected to such distributed shear forces that the tan-

gential surface displacements ahead of the crack edge induced by sub-problem 1 can be canceled out. A half
space subjected to a distributed dislocation on the surface is constructed as the fundamental problem to

solve sub-problem 2. Obviously, the fundamental problem does not have a characteristic length in the

loading function, and can be solved by the use of integral transforms, the Wiener–Hopf technique and the

Cagniard-de Hoop method. Exact expressions are derived for the modes II and III stress intensity factors as

functions of time and position along the crack edge. Some features of the solutions are discussed through

numerical results.
2. Basic formulas

As shown in Fig. 1, the configuration considered is a transversely isotropic solid containing a half-plane
crack. Suppose that the solid is initially stress free and at rest. A right-handed rectangular coordinate



Fig. 1. A half plane crack subjected to a pair of point shear forces perpendicular to the crack edge.
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system is introduced such that the y-axis coincides with the crack edge, and the half-plane crack occupies

the area z ¼ 0 and x < 0. It is also assumed that the symmetric axis of the transversely isotropic material is

parallel to z-axis. At time t ¼ 0 an opposed pair of point shear loads suddenly begin to act on the crack

faces at a point of a finite distance l from the crack edge, resulting in a three-dimensional stress wave field in

the solid.
Let uxðx; y; z; tÞ, uyðx; y; z; tÞ and uzðx; y; z; tÞ denote the relevant displacement components in x, y and z

directions respectively, then the stresses in the solid can be expressed by the relations
rxx ¼ c1
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rxy ¼
1

2
ðc1 � c2Þ

oux
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�
þ ouy

ox

�
; ð1fÞ
where ck (k ¼ 1–5) are material constants.

Equations of motion for the problem are
rij;j ¼ q€uui ði ¼ x; y; zÞ; ð2Þ
where q is the material density.

For a transversely isotropic material it is convenient to introduce scalar potentials /ðx; y; z; tÞ, wðx; y; z; tÞ
and hðx; y; z; tÞ, so the displacement components can be represented as (Buchwald, 1961)
ux ¼
o/
ox

þ ow
oy

; ð3aÞ

uy ¼
o/
oy

� ow
ox

; ð3bÞ

uz ¼
oh
oz

: ð3cÞ
Substitution of the above equations into Eqs. (1) and (2) gives after some manipulation
a4r2w þ a5

o2w
oz2

¼ o2w
ot2

; ð4aÞ

a3r2/ þ a5r2h þ a2

o2h
oz2

¼ o2h
ot2

; ð4bÞ

a1r2/ þ a5

o2/
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þ a3

o2h
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¼ o2/
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; ð4cÞ
where r2 ¼ o2

ox2 þ o2

oy2, and the five constants a1 ¼ c1=q, a2 ¼ c4=q, a3 ¼ ðc5 þ c3Þ=q, a4 ¼ ðc1 � c2Þ=2q,

a5 ¼ c5=q.

Using symmetry with respect to the plane z ¼ 0, we only consider the region zP 0. The boundary

conditions for z ¼ 0 are written as
rzzðx; y; 0; tÞ ¼ 0; ð5aÞ

rxzðx; y; 0; tÞ ¼ �F dðxþ lÞdðyÞHðtÞ þ rþ
xzðx; y; tÞ; ð5bÞ

ryzðx; y; 0; tÞ ¼ rþ
yzðx; y; tÞ; ð5cÞ

uxðx; y; 0; tÞ ¼ u�x ðx; y; tÞ; ð5dÞ

uyðx; y; 0; tÞ ¼ u�y ðx; y; tÞ; ð5eÞ
where �1 < x, y < þ1, F is the intensity of loads, Hð�Þ is the Heaviside function and dð�Þ is the Dirac

delta function. The functions rþ
xzðx; y; tÞ and rþ

yzðx; y; tÞ represent the unknown components of stresses

rxzðx; y; 0; tÞ and ryzðx; y; 0; tÞ in the region of xP 0, respectively; while rþ
xzðx; y; tÞ 	 0 and rþ

yzðx; y; tÞ 	 0 for

x < 0. The functions u�x ðx; y; tÞ and u�y ðx; y; tÞ represent the unknown components of displacements
uxðx; y; 0; tÞ and uyðx; y; 0; tÞ for x < 0, respectively; while u�x ðx; y; tÞ 	 0 and u�y ðx; y; tÞ 	 0 in the region of

xP 0.
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The initial conditions are expressed in terms of the potentials as
/ðx; y; z; 0Þ ¼ wðx; y; z; 0Þ ¼ hðx; y; z; 0Þ ¼ 0; ð6Þ

o/ðx; y; z; 0Þ
ot

¼ owðx; y; z; 0Þ
ot

¼ ohðx; y; z; 0Þ
ot

¼ 0: ð7Þ
From the boundary conditions described in (5), we can see that the above formulated problem is in fact the

case of a half space with its surface subjected to a point shear load varying with time as a Heaviside function

in the half region of x < 0, while the tangential surface displacements being zero in the region of xP 0.

Therefore, the solution of the problem can be treated as the superposition of two sub-problems. Sub-
problem 1 considers a half space under the action of a point shear load on the surface, while sub-problem 2

concerns the half space subjected to shear forces rþ
xzðx; y; tÞ and rþ

yzðx; y; tÞ so that the tangential surface

displacements induced by sub-problem 1 can be canceled out for xP 0.

The boundary conditions of sub-problem 1 can be written as
rzz1ðx; y; 0; tÞ ¼ 0; ð8aÞ

rxz1ðx; y; 0; tÞ ¼ �F dðxþ lÞdðyÞHðtÞ; ð8bÞ

ryz1ðx; y; 0; tÞ ¼ 0: ð8cÞ

The solution procedures for this sub-problem are based on the use of Laplace transform over time and

Hankel transforms, and the main steps are shown in the Appendix. The detailed calculation may be found

in the work of Zhao (1999). If the Laplace transform of any function, say /ðx; y; z; tÞ, is denoted by a

superposed hat, that is
/
_

ðx; y; z; sÞ ¼
Z 1

0

/ðx; y; z; tÞe�st dt; ð9Þ
the tangential surface displacements will take the following forms:
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where s is the transform parameter, K0ðp2srvÞ is the modified Bessel function of the second kind and
r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ lÞ2 þ y2

q
; ð12Þ
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In addition, when p1=p2 < v < 1,
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P ¼ 4ð ffiffiffiffiffiffiffiffiffi
a1a2

p � a2Þ
a1a2 � ða3 � a5Þ2

; ð16Þ
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a2
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; ð17Þ
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When v > 1,
f ðvÞ ¼ vQ3
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The boundary conditions of sub-problem 2 can be written as
rzz2ðx; y; 0; tÞ ¼ 0; ð27aÞ

rxz2ðx; y; 0; tÞ ¼ rþ
xzðx; y; tÞ; ð27bÞ

ryz2ðx; y; 0; tÞ ¼ rþ
yzðx; y; tÞ; ð27cÞ

ux2ðx; y; 0; tÞ ¼ u�x2ðx; y; tÞ � uþx1ðx; y; tÞ; ð27dÞ

uy2ðx; y; 0; tÞ ¼ u�y2ðx; y; tÞ � uþy1ðx; y; tÞ; ð27eÞ
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where
uþx1ðx; y; tÞ ¼ ux1ðx; y; 0; tÞHðxÞ; ð28aÞ

uþy1ðx; y; tÞ ¼ uy1ðx; y; 0; tÞHðxÞ: ð28bÞ
Our task is to determine the functions rþ
xzðx; y; tÞ, rþ

yzðx; y; tÞ, u�x2ðx; y; tÞ and u�y2ðx; y; tÞ, which are presented in
the next two sections.
3. Required fundamental solution

As the first step of solving sub-problem 2, a fundamental problem is constructed. The problem can be

viewed as a half-space problem with the material occupying the region zP 0, and subjected to mixed

boundary conditions on z ¼ 0. In the Laplace transform domain, the boundary conditions are expressed as
r_
F

zzðx; y; 0; sÞ ¼ 0; ð29aÞ

r_
F

xzðx; y; 0; sÞ ¼ r_
Fþ

xz ðx; y; sÞ; ð29bÞ

r_
F

yzðx; y; 0; sÞ ¼ r_
Fþ

yz ðx; y; sÞ; ð29cÞ

u_
F

x ðx; y; 0; sÞ ¼ u_
F�

x ðx; y; sÞ � gðvÞ � f ðvÞ
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2s2v2

o2K0ðp2svrÞ
ox2

�
� gðvÞK0ðp2svrÞ

�
HðxÞ; ð29dÞ
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y ðx; y; 0; sÞ ¼ u_
F�

y ðx; y; sÞ � gðvÞ � f ðvÞ
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2s2v2

o2K0ðp2svrÞ
oxoy

HðxÞ: ð29eÞ
The solution procedures are based on the use of transform methods and the Wiener–Hopf technique.

Initially, a one-sided Laplace transform over time is applied to the partial differential Eqs. (4), taking into

account initial conditions (7). Thereafter, a two-sided Laplace transform is introduced over the y coordi-

nate. The complex transform parameter is sn, and the transformed function is denoted with a bar, for

example,
�//ðx; n; z; sÞ ¼
Z þ1

�1
/
_

ðx; y; z; sÞe�sny dy: ð30Þ
Finally, a two-sided Laplace transform is used to suppress the dependence on x. The complex transform

parameter is sg, and the transformed function is denoted as
/
ðg; n; z; sÞ ¼
Z þ1

�1

�//ðx; n; z; sÞe�sgx dx: ð31Þ
The partial differential equations (4) are reduced to
�a4s2l2
3w


 þ a5

d2w


dz2
¼ 0; ð32aÞ

a3s2ðg2 þ n2Þ/
 � a5s2l2
2h


 þ a2

d2h


2
¼ 0; ð32bÞ
dz
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�a1s2l2
1/


 þ a5

d2/


dz2
þ a3

d2h


dz2
¼ 0; ð32cÞ
where
l1ðg; nÞ ¼ ðp2
1 � g2 � n2Þ1=2

; ð33Þ

l2ðg; nÞ ¼ ðp2
2 � g2 � n2Þ1=2

; ð34Þ

l3ðg; nÞ ¼ ðp2
3 � g2 � n2Þ1=2

: ð35Þ
The bounded solutions to Eqs. (32a)–(32c) as z ! 1 may be written in the form
/
 ¼ Ae�sk1z þ Be�sk2z; ð36aÞ

h
 ¼ a1l2
1 � a5k

2
1

a3k
2
1

Ae�sk1z þ a1l2
1 � a5k

2
2

a3k
2
2

Be�sk2z; ð36bÞ

w
 ¼ Ce�sk3z; ð36cÞ

where A, B, C are arbitrary functions of n and g, and
k2
1;2 ¼

Lðg2 þ n2Þ þ a2 þ a5

2a2a5

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðg2 þ n2Þ þ a2 þ a5

2a2a5
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� a1

a2

l2
1l

2
2

s
; ð37Þ

k3 ¼
ffiffiffiffiffi
a4

a5

r
l3: ð38Þ
The complex g plane is cut along

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1 � n2
q

< jReðgÞj < 1, ImðgÞ ¼ 0 so that Reðl1ÞP 0 in the entire cut g
plane for each value of g, and likewise for Reðl2; l3; k1; k2ÞP 0.

Making use of the known integral (Freund, 1990)
Z þ1

�1
K0ðp2srvÞ expð�snyÞdy ¼ p

sk
exp½�sðxþ lÞk�; ð39Þ
where
k ¼ kðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2v2 � n2

q
; ð40Þ
and substituting the transformed stresses and displacements into the boundary conditions (29), we have
½a3ða3 � a5Þðg2 þ n2Þ þ a2ða1l
2
1 � a5k

2
1Þ�Aþ ½a3ða3 � a5Þðg2 þ n2Þ þ a2ða1l

2
1 � a5k

2
2Þ�B ¼ 0; ð41aÞ
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xz; ð41bÞ
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nB� gk3C
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sgAþ sgBþ snC ¼ U�
x þ 1

g þ k
U 0
x ; ð41dÞ
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snAþ snB� sgC ¼ U�
y þ 1

g þ k
U 0
y ; ð41eÞ
where
Rþ
xz ¼ s

Z þ1

�1

Z þ1

�1
r_

Fþ

xz ðx; y; sÞ exp½�sðny þ gxÞ�dy dx; ð42Þ

Rþ
yz ¼ s

Z þ1

�1

Z þ1

�1
r_

Fþ

yz ðx; y; sÞ exp½�sðny þ gxÞ�dy dx; ð43Þ

U�
x ¼ s2

Z þ1

�1

Z þ1

�1
u_

F�

x ðx; y; sÞ exp½�sðny þ gxÞ�dy dx; ð44Þ

U�
y ¼ s2

Z þ1

�1

Z þ1

�1
u_

F�

y ðx; y; sÞ exp½�sðny þ gxÞ�dy dx; ð45Þ

U 0
x ¼ � pk½gðvÞ � f ðvÞ�

p2
2v2

expð�slkÞ þ p
k
gðvÞ expð�slkÞ; ð46Þ

U 0
y ¼ pn½gðvÞ � f ðvÞ�

p2
2v2

expð�slkÞ: ð47Þ
If A, B, C are eliminated from the above equations, we will obtain
�qa5Dðg; nÞCðg; nÞ U�
	

þ 1

g þ k
U0



¼ Cðg; nÞRþ; ð48Þ
where
U� ¼
U�
x

U�
y

 !
; U0 ¼

U 0
x

U 0
y

 !
; Rþ ¼

Rþ
xz

Rþ
yz

 !
; ð49Þ

Cðg; nÞ ¼ g n
n �g

� �
; ð50Þ

Dðg; nÞ ¼
ffiffiffiffiffiffi
a1a2

p

a2a5

Rðg;nÞ
l2ðg;nÞ

0

0 k3ðg; nÞ

� �
; ð51Þ

Rðg; nÞ ¼
½ða3 � a5Þ2 � a1a2�ðg2 þ n2Þ þ a2

n o
l2 þ

ffiffiffiffiffiffiffiffiffi
a1a2

p
l1ffiffiffiffiffiffiffiffiffi

a1a2

p ðk1 þ k2Þ
: ð52Þ
Eq. (48) is a matrix Wiener–Hopf problem. In order to determine the unknown functions Rþ and U� with

the Wiener–Hopf technique, we must represent any mixed function in (51) as the product of two sectionally

analytic functions. To this end, we introduce a new function by defining
Sðg; nÞ ¼ Rðg; nÞ
kðc2 � g2 � n2Þ

; ð53Þ
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where c ¼ c�1
r , cr is the Rayleigh wave speed of the transversely isotropic material and
k ¼ ð2a2a5Þ1=2ffiffiffiffiffiffiffiffiffi
a1a2

p
a1a2 � ða3 � a5Þ2

� ðL2 � 4a1a2a2
5Þ

1=2 � L
h i1=2

þ ðL2 � 4a1a2a2
5Þ

1=2 � L
h i1=2

: ð54Þ
Following the work of Zhao (2001), The function Sðg; nÞ can be decomposed into
Sðg; nÞ ¼ Sþðg; nÞS�ðg; nÞ; ð55Þ

where
S�ðg; nÞ ¼ exp

(
� 1

p

Z p2

p1

f1ð1Þ þ f2ð1Þ½ �1d1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 � n2

p
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 � n2

p
� gÞ

)
; ð56Þ

f1ð1Þ ¼ tg�1 ð412 þ P Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2 � 12
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 � p2
1

p
ðp2

2 � 212Þ2 þ P12 þ Q

" #
; ð57Þ

f2ð1Þ ¼ tg�1 b5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 � p2

1

p
� b6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2 � 12
p

b5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2 � 12
p

þ b6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 � p2

1

p
" #

; ð58Þ

b5 ¼
L12 þ a2 þ a5

2a2a5

	 
2
"8<

: þ a1

a2

ð12 � p2
1Þðp2

2 � 12Þ
#1=2

þ L12 þ a2 þ a5

2a2a5

9=
;

1=2

; ð59Þ

b6 ¼
L12 þ a2 þ a5

2a2a5

	 
2
"8<

: þ a1

a2

ð12 � p2
1Þðp2

2 � 12Þ
#1=2

� L12 þ a2 þ a5

2a2a5

9=
;

1=2

: ð60Þ
The functions Sþðg; nÞ and S�ðg; nÞ are analytic and nonzero in the half planes ReðgÞ > �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1 � n2
q

and

ReðgÞ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1 � n2
q

, respectively.

We also have
l2ðg; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2 � n2

q	
þ g


1=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2 � n2

q	
� g


1=2

ð61Þ
and
k3ðg; nÞ ¼ ða4=a5Þ1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

3 � n2

q	
þ g


1=2

� ða4=a5Þ1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

3 � n2

q	
� g


1=2

: ð62Þ
Then the matrix Dðg; nÞ can be factored as
Dðg; nÞ ¼ Dþðg; nÞD�ðg; nÞ; ð63Þ

where
D�ðg; nÞ ¼

k
ffiffiffiffiffiffi
a1a2

p

a2a5

� �1=2
 ffiffiffiffiffiffiffiffiffi

c2�n2
p

�g
!
S�ðg;nÞ ffiffiffiffiffiffiffiffiffi

p2
2
�n2

p
�g
!1=2 0

0 a4

a5

� �1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

3 � n2
q

� g

	 
1=2

2
66664

3
77775: ð64Þ
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Eq. (48) becomes
�qa5D�ðg; nÞCðg; nÞU� � qa5

g þ k
D�ðg; nÞCðg; nÞU 0 ¼ D�1

þ ðg; nÞCðg; nÞRþ: ð65Þ
The only singularity in (65) is a simple pole at g ¼ �k. This singularity can be removed by requiring the

residue to be zero, so we obtain
�qa5D�ðg; nÞCðg; nÞU� � qa5

g þ k
½D�ðg; nÞ �Dþðk; nÞ�Cðg; nÞU0

¼ D�1
þ ðg; nÞCðg; nÞRþ þ qa5

g þ k
Dþðk; nÞCðg; nÞU0: ð66Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
The right-hand side of the above equation is analytic for ReðgÞ > � p2
1 � n2, and the left-hand side is

analytic for ReðgÞ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1 � n2
q

. Consequently, by analytic continuation, the two sides represent a single

entire function vector Eðg; n; sÞ. At the same time, each component of Eðg; n; sÞ is a constant as g ! þ1
and has the order of jgj1=2

as g ! �1. From the extended Liouville theorem, we have Eðg; n; sÞ 	 A, and A

is a vector which is independent on the variable g. Thus,
Rþ ¼ qa5

g2 þ n2
Cðg; nÞDþðg; nÞ A

�
� 1

g þ k
Dþðk; nÞCðg; nÞU0

�
; ð67Þ

U� ¼ � 1

g2 þ n2
Cðg; nÞD�1

� ðg; nÞ A

(
þ 1

g þ k
½D�ðg; nÞ �Dþðk; nÞ�Cðg; nÞU0

)
; ð68Þ
where the vector A remains to be determined. Let A ¼ ðA1A2ÞT
and
x ¼
�n ImðnÞ > 0;

n ImðnÞ6 0;

(
ð69Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

then it is seen from (67) and (68) that Rþ has a simple pole at g ¼ ix in ReðgÞ > � p2

1 � n2, and U� has a

simple pole at g ¼ �ix in ReðgÞ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1 � n2
q

. These two poles must be removed because Rþ and U� are

analytic in the half planes ReðgÞ > �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1 � n2
q

and ReðgÞ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1 � n2
q

, respectively. Therefore,
Cðix; nÞDþðix; nÞ A

�
� 1

k þ ix
Dþðk; nÞCðix; nÞU0

�
¼ 0; ð70Þ

Cð�ix; nÞD�1
� ð�ix; nÞ A

(
þ 1

k � ix
D�ð½ � ix; nÞ �Dþðk; nÞ�Cð � ix; nÞU0

)
¼ 0: ð71Þ
From the above equations and the observation that Cðg; nÞ has rank 1 at g ¼ �ix, we have
A1 ¼ � ix
D2

1 þ D2
2

D2

k þ ix
D1

E2

	�
� D2

E1



� D1

k � ix
D2

E2

	
� D1

E1


�
U 0
x �

n
D2

1 þ D2
2

D2

k þ ix
D1

E2

	�
� D2

E1




þ D1

k � ix
D2

E2

	
� D1

E1


�
U 0
y ; ð72Þ

A2 ¼
n

D2
1 þ D2

2

D1

k þ ix
D1

E2

	�
� D2

E1



þ D2

k � ix
D2

E2

	
� D1

E1


�
U 0
x �

ix
D2

1 þ D2
2

D1

k þ ix
D1

E2

	�
� D2

E1




� D2

k � ix
D2

E2

	
� D1

E1


�
U 0
y ; ð73Þ
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where
D1 ¼
a2a5

k
ffiffiffiffiffiffiffiffiffi
a1a2

p
	 
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2 � n2
q

þ ix

	 
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � n2

p
þ ix

� �
Sþ ix; nð Þ

; ð74Þ

D2 ¼
a5

a4

	 
1=4
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3 � n2

q
þ ix

	 
1=2
; ð75Þ

E1 ¼
a2a5

k
ffiffiffiffiffiffiffiffiffi
a1a2

p
	 
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2 � n2
q

þ k

	 
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � n2

p
þ k

� �
Sþðk; nÞ

; ð76Þ

E2 ¼
a5

a4

	 
1=4
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3 � n2

q
þ k

	 
1=2
: ð77Þ
Once Rþ and U� have been determined, the functions A, B and C can be solved from Eqs. (41). By sub-

stituting (36) into Eqs. (3) and (1) respectively, the displacements and stresses for the fundamental problem

are then derived. From Eqs. (10), (11), (27) and (29), we see that the solution of sub-problem 2 can be

obtained by a direct integration of the fundamental solution.
4. The stress intensity factor histories

In the field of dynamic fracture mechanics, the interest will be the determination of dynamic stress in-

tensity factors. The stress intensity factors for the fundamental problem in the Laplace transform domain

can be expressed as
�KKF
IIðn; sÞ ¼ lim

x!0þ
½ð2pxÞ1=2�rrFþxz ðx; n; sÞ�; ð78Þ

�KKF
IIIðn; sÞ ¼ lim

x!0þ
½ð2pxÞ1=2�rrFþyz ðx; n; sÞ�: ð79Þ
From the Abel theorem concerning asymptotic properties of transforms (Freund, 1990) and by virtue of

Eqs. (42) and (43), we get
�KKF
IIðn; sÞ

�KKF
IIIðn; sÞ

8<
:

9=
; ¼ lim

g!þ1
ð2sgÞ1=2Rþðg; n; sÞ � s�1
h i

: ð80Þ
Substitution of (67) into the above equation yields
�KKF
IIðn; sÞ ¼

qpa2
5

v2
� k

ffiffiffiffiffiffiffiffiffi
a1a2

p

a a

	 
1=2
ffiffiffi
2

s

r
G1ðn;x; vÞ expð�slkÞ; ð81Þ
2 5
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�KKF
IIIðn; sÞ ¼

qpa2
5

v2
� a4

a5

	 
1=4
ffiffiffi
2

s

r
G2ðn;x; vÞ expð�slkÞ; ð82Þ
where
G1ðn;x; vÞ ¼ g1ðn;x; vÞf ðvÞ þ g2ðn;x; vÞgðvÞ; ð83Þ

G2ðn;x; vÞ ¼ g3ðn;x; vÞf ðvÞ þ g4ðn;x; vÞgðvÞ; ð84Þ

g1ðn;x; vÞ ¼ � 1

E1

k

�
þ ixðD2

1 � D2
2Þ

D2
1 þ D2

2

�
; ð85Þ

g2ðn;x; vÞ ¼ � ixv2

a5kðD2
1 þ D2

2Þ
D2

k þ ix
D1

E2

	�
� D2

E1



� D1

k � ix
D2

E2

	
� D1

E1


�
� v2

a5kE1

� g1ðn;x; vÞ; ð86Þ

g3ðn;x; vÞ ¼ 2nD1D2

E1ðD2
1 þ D2

2Þ
; ð87Þ

g4ðn;x; vÞ ¼ � v2n
a5kðD2

1 þ D2
2Þ

D1

k þ ix
D1

E2

	�
� D2

E1



þ D2

k � ix
D2

E2

	
� D1

E1


�
� g3ðn;x; vÞ: ð88Þ
The inverse two-sided Laplace transform of (81) is
K
_F

IIðy; sÞ ¼
pqa2

5

v2

k
ffiffiffiffiffiffiffiffiffi
a1a2

p

a2a5

	 
1=2
ffiffiffi
2

s

r
� s
2pi

Z a0þi1

a0�i1
G1ðn;x; vÞ expf�s½lkðnÞ � ny�gdn; ð89Þ
where y > 0 is assumed for the time being and a0 is any real number between �p2v and p2v. The inverse

transform is carried out here through use of the Cagniard-de Hoop technique. The Cagniard contours are
introduced by setting lkðnÞ � ny ¼ t, which can be solved for n to yield
n� ¼ � yt
y2 þ l2

� il
y2 þ l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � p2

2v2ðy2 þ l2Þ
q

: ð90Þ
In the n plane, (90) describes a hyperbola that is denoted as C�. When t ¼ t0 ¼ p2v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ l2

p
, the imaginary

part of n� vanishes and the vertex of the hyperbola C� is defined by
n0 ¼ � p2vyffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ l2

p : ð91Þ
The Cþ and C�, together with the inversion path of n and two arcs of indefinitely large radius, form a closed

contour as shown in Fig. 2. Now, we shift the n integration to the contour. When jn0j < p1, it is found that

the integrand in (89) is analytic inside and on this contour. Choose the appropriate branch of kðnÞ such that

kð0Þ ¼ p2v. Then, according to Cauchy�s integral theorem and Jordan�s lemma, we obtain
K
_F

IIðy; sÞ ¼
qpa2

5

v2

k
ffiffiffiffiffiffiffiffiffi
a1a2

p

a2a5

	 
1=2
ffiffiffi
2

s

r
� s
p

Im

Z 1

t0

G1ðnþ;�nþ; vÞ expð�stÞ � onþ

ot
dt: ð92Þ
From the convolution theorem for Laplace transform, we have
KF
IIðy; tÞ ¼

ffiffiffi
2

p

r
qa2

5

v2

k
ffiffiffiffiffiffiffiffiffi
a1a2

p

a2a5

	 
1=2
o

ot

Z t

t0

Im G1ðnþ;

�
�nþ; vÞ

onþ

os

�
dsffiffiffiffiffiffiffiffiffiffi
t � s

p ; ð93Þ
where the variable t in nþ should be replaced by s.
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When jn0j > p1, an additional integration path from �p1 to �jn0j, which embraces the branch cut of

G1ðn;x; vÞ, must be considered. Eq. (89) becomes
K
_F

IIðy; sÞ ¼
qpa2

5

v2

k
ffiffiffiffiffiffiffiffiffi
a1a2

p

a2a5

	 
1=2
ffiffiffi
2

s

r
� s
p

Im

Z 1

t0

G1ðnþ;

*
� nþ; vÞ expð � stÞ � onþ

ot
dt

� Im

Z jn0j

p1

G1ð � n1; n1; vÞ exp f � s½lkðn1Þ þ n1y�gdn1

+
: ð94Þ
Let lkðn1Þ þ n1y ¼ s, then we have tH 6 s6 t0, where tH ¼ p1y þ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2v2 � p2
1

p
. n1 is solved to be
n1 ¼
ys

y2 þ l2
� l
y2 þ l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2v2ðy2 þ l2Þ � s2

q
: ð95Þ
The stress intensity factor in the time domain can be obtained as follows
KF
IIðy; tÞ ¼

ffiffiffi
2

p

r
qa2

5

v2

k
ffiffiffiffiffiffiffiffiffi
a1a2

p

a2a5

	 
1=2
o

ot

Z t

t0

Im G1ðnþ;

�(
� nþ; vÞ

onþ

os

�
dsffiffiffiffiffiffiffiffiffiffi
t � s

p

�
Z t0

tH

Im G1ð
�

�n1; n1; vÞ
on1

os

�
dsffiffiffiffiffiffiffiffiffiffi
t � s

p
)
: ð96Þ
Combining (93) with (96), the dynamic stress intensity factor for the fundamental problem may be

expressed in the form
KF
IIðy; tÞ ¼

ffiffiffi
2

p

r
qa2

5

v2

k
ffiffiffiffiffiffiffiffiffi
a1a2

p

a2a5

	 
1=2
o

ot

Z t

t0

Im G1ðnþ;

�(
�nþ; vÞ

onþ

os

�
dsffiffiffiffiffiffiffiffiffiffi
t � s

p

�
Z t0

tH

Im G1ð
�

�n1; n1; vÞ
on1

os

�
dsffiffiffiffiffiffiffiffiffiffi
t � s

p H vy
	

� p1

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ l2

p 
)
: ð97Þ
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In a similar way, we have
KF
IIIðy; tÞ ¼

ffiffiffi
2

p

r
qa2

5

v2

a4

a5

	 
1=4
o

ot

Z t

t0

Im G2ðnþ;

�(
� nþ; vÞ

onþ

os

�
dsffiffiffiffiffiffiffiffiffiffi
t � s

p

�
Z t0

tH

Im G2ð
�

� n1; n1; vÞ
on1

os

�
dsffiffiffiffiffiffiffiffiffiffi
t � s

p H vy
	

� p1

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ l2

p 
)
: ð98Þ
With the fundamental solution and the solution of sub-problem 1 at hand, it is now possible to construct

the stress intensity factor histories for the case of point shear loading varying with time as a Heaviside

function on the crack faces at x ¼ �l, y ¼ z ¼ 0. As described in the second section, this solution can be

treated as the superposition of sub-problems 1 and 2. Obviously, the shear stresses of sub-problem 1 are not

singular at x ¼ 0, z ¼ 0. Therefore, the stress intensity factors are determined by sub-problem 2 only. From

Eqs. (10), (11), (27) and (29), it is found that the stress intensity factors are given by
KIIðy; tÞ ¼
Fp2

p2q

Z 1

p1=p2

KF
IIðy; tÞdv; KIIIðy; tÞ ¼

Fp2

p2q

Z 1

p1=p2

KF
IIIðy; tÞdv: ð99Þ
Substituting (97) and (98) into the above equations and taking into account that tH 6 t0 6 t, we finally

obtain
KIIðy; tÞ ¼
ffiffiffi
2

p
Fa5

p5=2

k
ffiffiffiffiffiffiffiffiffi
a1a2

p

a2

	 
1=2
o

ot

Z v0

p1=p2

1

v2
K1ðy; t; vÞf ðvÞdv

"
þ
Z v0

p3=p2

1

v2
K2ðy; t; vÞgðvÞdv

#
; ð100Þ

KIIIðy; tÞ ¼
ffiffiffi
2

p
Fa5ða4a5Þ1=2

p5=2

o

ot

Z v0

p1=p2

1

v2
K3ðy; t; vÞf ðvÞdv

"
þ
Z v0

p3=p2

1

v2
K4ðy; t; vÞgðvÞdv

#
; ð101Þ
where
Kjðy; t; vÞ ¼
Z t

t0

Im gjðnþ;

�
�nþ; vÞ

onþ

os

�
dsffiffiffiffiffiffiffiffiffiffi
t � s

p

�
Z t0

tH

Im gjð
�

�n1; n1; vÞ
on1

os

�
dsffiffiffiffiffiffiffiffiffiffi
t � s

p H vy
	

� p1

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ l2

p 

; ðj ¼ 1–4Þ ð102Þ

v0 ¼
t

p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ l2

p : ð103Þ
Though Eqs. (100) and (101) are derived with the limitation y > 0, they can be easily extended to the full

range �1 < y < 1 by analytic continuation.
5. Case of loading parallel to the crack edge

When the point shear forces varying with time as a Heaviside function are applied in a direction parallel

to the crack edge (Fig. 3), it is found that the stress intensity factors take the same forms as Eqs. (100) and

(101). However, the functions gjðn;x; vÞðj ¼ 1–4) should be replaced by
g1ðn;x; vÞ ¼ n
kE1

k

�
þ ixðD2

1 � D2
2Þ

D2
1 þ D2

2

�
; ð104Þ

g2ðn;x; vÞ ¼ � v2n
a5kðD2

1 þ D2
2Þ

D2

k þ ix
D1

E2

	�
� D2

E1



þ D1

k � ix
D2

E2

	
� D1

E1


�
� g1ðn;x; vÞ; ð105Þ



Fig. 3. A half plane crack subjected to a pair of point shear forces parallel to the crack edge.

192 X. Zhao / International Journal of Solids and Structures 41 (2004) 177–197
g3ðn;x; vÞ ¼ � 2n2D1D2

kE1ðD2
1 þ D2

2Þ
; ð106Þ
g4ðn;x; vÞ ¼ ixv2

a5kðD2
1 þ D2

2Þ
D1

k þ ix
D1

E2

	�
� D2

E1



� D2

k � ix
D2

E2

	
� D1

E1


�
� v2

a5kE2

� g3ðn;x; vÞ: ð107Þ
6. Numerical results and discussions

We now discuss the properties of the dynamic stress intensity factor histories represented by (100) and

(101). It is observed that the first term in (100) and (101) reflects the influence of the dilatational wave, shear

waves and the Rayleigh wave. The function f ðvÞ has a simple pole at c=p2, and an immediate inference is
that when the Rayleigh wave arrives, the stress intensity factors will become singular at this instant. The

second term in (100) and (101) is induced by shear waves alone. It is also seen that Kjðy; t; vÞ consists of two

terms. One is induced by the incident waves, and the other is due to the incident secondary waves produced

by the first waves interacting with crack edge. That is to say, at a point on the crack edge, we may observe

the arrivals of two kinds of waves. One kind of the waves are generated by the impact point shear loading

and propagate directly towards the observing point. The other kind of the waves are also due to the impact

point loading, but firstly arrive at the crack tip, and then propagate along the crack edge towards the

observing point. This phenomenon is quite different from the two-dimensional case as discussed by Freund
(1990).
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To make the physical meaning much clear, a numerical calculation of (100) and (101) is carried out for

Poisson�s material that is isotropic, and for Beryl that is transversely isotropic.

Poisson�s material: a1 ¼ a2 ¼ 3a5, a3 ¼ 2a5, a4 ¼ a5, c ¼ 1:088=
ffiffiffiffiffi
a5

p
.

Beryl: a1 ¼ 4:12484a5, a2 ¼ 3:61802a5, a3 ¼ 2:01199a5, a4 ¼ 1:17363a5, c ¼ 1:04645=
ffiffiffiffiffi
a5

p
.

Results for y ¼ l are shown in Figs. 4 and 5, with the solid line for Poisson�s material and the dashed line

for Beryl. In the figures, T ¼ v0p2=p1, SIF 2 ¼ KIIðy; tÞðplÞ3=2
=ð

ffiffiffi
2

p
F Þ, SIF 3 ¼ KIIIðy; tÞðplÞ3=2

=ð
ffiffiffi
2

p
F Þ.

It is shown in Figs. 4 and 5 that before the arrival of the dilatational wave, the medium is completely at

rest and the stress intensity factors are zero. At the instant when the dilatational wave arrives, a jump takes

place, and then the stress intensity factors decrease with time. Upon the arrival of the first shear wave, a

discontinuity happens. When the Rayleigh wave arrives at t ¼ ðl2 þ y2Þ1=2 � c�1
r , the stress intensity factors

are of the singularity ðv0 � c=p2Þ�1
at this instant. Thereafter, the transient stress intensity factors decay

gradually towards their equilibrium stress intensity factors that were obtained by Kachanov and Kara-
petian (1997).

This completes the analysis of a half plane crack in a transversely isotropic solid under the action of a

pair of point shear loads varying with time as a Heaviside function on the crack faces at a finite distance l
-2
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Fig. 4. The dynamic stress intensity factor history KIIðy; tÞ.
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Fig. 5. The dynamic stress intensity factor history KIIIðy; tÞ.



194 X. Zhao / International Journal of Solids and Structures 41 (2004) 177–197
away from the crack edge. Exact expressions are derived for the modes II and III stress intensity factors as

functions of time and position along the crack edge.
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Appendix A

The dynamic response of an elastic half-space to tangential surface loading.

Consider the case that a concentrated force parallel to x-axis is applied at the origin and varies with time

as a Heaviside function. In the cylindrical co-ordinate system, the boundary conditions can be described as
rzz1ðr; 0; tÞ ¼ 0; ðA1:1Þ

rrz1ðr; 0; tÞ ¼ �F dðrÞHðtÞ cos u; ðA1:2Þ

ruz1ðr; 0; tÞ ¼ F dðrÞHðtÞ sin u: ðA1:3Þ
For this case, the solution will take the following forms
ur1ðr;u; z; tÞ ¼ urðr; z; tÞ cos u; ðA2:1Þ

uu1ðr;u; z; tÞ ¼ �uuðr; z; tÞ sin u; ðA2:2Þ

uz1ðr;u; z; tÞ ¼ uzðr; z; tÞ cos u: ðA2:3Þ

Further, the functions urðr; z; tÞ, uuðr; z; tÞ and uzðr; z; tÞ can be expressed with scalar potentials /ðr; z; tÞ,
wðr; z; tÞ and hðr; z; tÞ as
urðr; z; tÞ ¼
o/ðr; z; tÞ

or
þ 1

r
wðr; z; tÞ; ðA3:1Þ

uuðr; z; tÞ ¼
1

r
/ðr; z; tÞ þ owðr; z; tÞ

or
; ðA3:2Þ

uzðr; z; tÞ ¼
ohðr; z; tÞ

oz
: ðA3:3Þ
Equations of motion become
a4

o2w
or2

	
þ 1

r
ow
or

� 1

r2
w



þ a5

o2w
oz2

¼ o2w
ot2

; ðA4:1Þ

a3

o2/
or2

	
þ 1

r
o/
or

� 1

r2
/



þ a5

o2h
or2

	
þ 1

r
oh
or

� 1

r2
h



þ a2

o2h
oz2

¼ o2h
ot2

; ðA4:2Þ

a1

o2/
or2

	
þ 1

r
o/
or

� 1

r2
/



þ a5

o2/
oz2

þ a3

o2h
oz2

¼ o2/
ot2

: ðA4:3Þ
In addition, the initial conditions of zero must be satisfied.
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With the help of Laplace transform over time and Hankel transforms, the bounded solutions of Eqs.

(A4.1)–(A4.3), can be obtained:
/
_

ðr; z; sÞ ¼
Z 1

0

½A1e
�sk4z þ B1e

�sk5z�nJ1ðrnÞdn; ðA5:1Þ

h
_

ðr; z; sÞ ¼
Z 1

0

ða1n
2 þ s2Þ � a5s2k2

4

a3s2k2
4

A1e
�sk4z

"
þ ða1n

2 þ s2Þ � a5s2k2
5

a3s2k2
5

B1e
�sk5z

#
nJ1ðrnÞdn; ðA5:2Þ

w
_

ðr; z; sÞ ¼
Z 1

0

C1e
�sk6znJ1ðrnÞdn; ðA5:3Þ
where A1, B1 and C1 are arbitrary functions of n and s, and
k6 ¼
1ffiffiffiffiffi
a5

p
s
ða4n

2 þ s2Þ1=2
; ðA:6Þ
k4 and k5 are the positive roots of the following equation:
a2a5s4k4 � s2½ða2
5 � a2

3 þ a1a2Þn2 þ ða2 þ a5Þs2�k2 þ ða1n
2 þ s2Þða1n

2 þ s2Þ ¼ 0: ðA:7Þ
From boundary conditions (A1.1)–(A1.3), A1, B1 and C1 can be determined:
A1 ¼ � F nk4k5

2pqa5n
2ðk5 � k4Þ

ða1a2n
2 þ a2s2Þ � a2a5s2k2

5 � a3ða3 � a5Þn2

ða1n
2 þ s2Þs2 þ s2f½a1a2 � ða3 � a5Þ2�n2 þ a2s2gk4k5

; ðA8:1Þ

B1 ¼
F nk4k5

2pqa5n
2ðk5 � k4Þ

ða1a2n
2 þ a2s2Þ � a2a5s2k2

4 � a3ða3 � a5Þn2

ða1n
2 þ s2Þs2 þ s2f½a1a2 � ða3 � a5Þ2�n2 þ a2s2gk4k5

; ðA8:2Þ

C1 ¼
F n

2pqa5s2n2k6

: ðA8:3Þ
Then, we have
u_rðr; 0; sÞ ¼
Fa2

4pq
ffiffiffiffiffiffiffiffiffi
a1a2

p
Z 1

0

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ p2

2

q
R1ðnÞ

½J0ðsrnÞ � J2ðsrnÞ�dn þ F
4pq

ffiffiffiffiffiffiffiffiffi
a4a5

p
Z 1

0

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ p2

3

q ½J0ðsrnÞ

þ J2ðsrnÞ�dn; ðA:9Þ

u_uðr; 0; sÞ ¼
Fa2

4pq
ffiffiffiffiffiffiffiffiffi
a1a2

p
Z 1

0

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ p2

2

q
R1ðnÞ

½J0ðsrnÞ þ J2ðsrnÞ�dn

þ F
4pq

ffiffiffiffiffiffiffiffiffi
a4a5

p
Z 1

0

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ p2

3

q ½J0ðsrnÞ � J2ðsrnÞ�dn; ðA:10Þ
where
R1ðnÞ ¼
f½a1a2 � ða3 � a5Þ2�n2 þ a2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ p2

2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1a2ðn2 þ p2

1Þ
q

ffiffiffiffiffiffiffiffiffi
a1a2

p ðk7 þ k8Þ
; ðA:11Þ
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k2
7;8 ¼

Ln2 þ a2 þ a5

2a2a5

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ln2 þ a2 þ a5

2a2a5

� �
� a1

a2

ðn2 þ p2
1Þðn

2 þ p2
2Þ

s
: ðA:12Þ
Introducing the contour integration similar to the solution of Lamb�s problem for the isotropic material

(Eringen and Suhubi, 1975), we further have
u_rðr; 0; sÞ ¼
F

2p2q

Z 1

0

Im
vffiffiffiffiffiffiffiffiffi

a4a5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

3 � v2
p

"
� a2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2 � v2
p
ffiffiffiffiffiffiffiffiffi
a1a2

p
R1ðivÞ

#
K2ðsrvÞdv

� F
2p2q

Z 1

0

Im
vffiffiffiffiffiffiffiffiffi

a4a5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

3 � v2
p

"
þ a2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
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p
ffiffiffiffiffiffiffiffiffi
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p
R1ðivÞ

#
K0ðsrvÞdv; ðA:13Þ

u_uðr; 0; sÞ ¼ � F
2p2q

Z 1

0

Im
vffiffiffiffiffiffiffiffiffi

a4a5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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� a2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
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p
ffiffiffiffiffiffiffiffiffi
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#
K2ðsrvÞdv

� F
2p2q

Z 1

0

Im
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a4a5
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þ a2v
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p2

2 � v2
p
ffiffiffiffiffiffiffiffiffi
a1a2

p
R1ðivÞ

#
K0ðsrvÞdv: ðA:14Þ
The surface displacements in x and y directions take the following forms:
u_x1 ¼ u_rðr;u; 0; sÞ cos u � u_uðr;u; 0; sÞ sin u; ðA:15Þ

u_y1
¼ u_rðr;u; 0; sÞ sin u þ u_uðr;u; 0; sÞ cos u: ðA:16Þ
By using the relations
sin u ¼ y
r
; cos u ¼ x

r
; ðA:17Þ
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o2K0ðsrvÞ
ox2
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xy
r2
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1

s2v2

o2K0ðsrvÞ
oxoy

; ðA:19Þ
we finally have
u_x1 ¼
F

p2q

Z 1

0

Im
vffiffiffiffiffiffiffiffiffi
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dv: ðA:21Þ
Let
f ðvÞ ¼ Im
a2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2 � v2
p
ffiffiffiffiffiffiffiffiffi
a1a2

p
R1ðivÞ

" #
; gðvÞ ¼ Im

vffiffiffiffiffiffiffiffiffi
a4a5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

3 � v2
p

" #
; ðA:22Þ
and change the integration variable v to p2v, we obtain Eqs. (10) and (11).
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